

Laser Materials Tm:YAG

General Information

Tm:YAG is used as an efficient means to generate high power 2.01 micron laser emission from the 3F_4 - 3H_6 transition, for surgical cutting and coagulation applications due to the high water absorption at this wavelength [1]. Diode pumping is commonly employed into the 785nm 3H_6 - 3H_4 absorption feature. Of interest in Tm $^{3+}$ activated systems is the increased quantum efficiency obtained thru Tm-Tm ion cross relaxation; a non-radiative process where an excited Thulium in the 3H_4 state (energy level around 12900 cm -1) decays to the 3F_4 state (energy level around 6000 cm -1) and a nearest neighbor ground-state Thulium ion is promoted to the 3F_4 level, along with phonon byproduct to satisfy energy conservation [2]. Thus, in appropriate concentrations, a single Thulium ion excited to the 3H_4 level generates two Thulium ions in the 3F_4 upper laser level.

When cooled to cryogenic temperatures, the ${}^{3}\text{H}_{6}^{-3}\text{H}_{4}$ line of low doped Tm:YAG exhibits very narrow homogeneously broadened absorption features (on the order of ~kHz), embedded within a broad (~30GHz) inhomogeneously broadened line. This combination of properties has been shown to have significant importance to next generation quantum computing protocols [3], real-time broad-band spectral analysis for electronic awareness applications[4], and high time-bandwidth product signal processing applications [5].

Contact us with your specific requirements or for availability and pricing.

Dopant Ion

Tm3+ concentration range	0.005 - 100 atomic %
Dopant Ion Density @ 1 atomic %	
Y3+ Site	1.38 x 10 ²⁰ cm ⁻³
Al3+Site (IV)	1.38 x 10 ²⁰ cm ⁻³
Al3+Site (VI)	0.92 x 10 ²⁰ cm ⁻³

Common Operating Specs

Emission Wavelength	2.01 μm	
Laser Transition	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{H}_{6}$	
Pump Wavelength	785 nm	

Physical Properties

Coefficient of Thermal Expansion	6.14 x 10 ⁻⁶ K ⁻¹
Thermal Diffusivity	$0.041 \text{ cm}^2 \text{ s}^{-2}$
Thermal Conductivity	11.2 W m ⁻¹ K ⁻¹
Specific Heat (Cp)	$0.59 \text{ J g}^{-1} \text{ K}^{-1}$
Thermal Shock Resistant	800 W m ⁻¹
Refractive Index @ 632.8 nm	1.83
dn/dT (Thermal Coefficient of Refractive Index) @ 1064nm	7.8 10 ⁻⁶ K ⁻¹
Molecular Weight	593.7 g mol ⁻¹
Melting Point	1965°C
Density	4.56 g cm ⁻³
MOHS Hardness	8.25
Young's Modulus	335 Gpa
Tensile Strength	2 Gpa
Crystal Structure	Cubic
Standard Orientation	<111>
Y3+ Site Symmetry	D_2
Lattice Constant	a=12.013 Å

J. Lumin. 122-123 p. 526-528 (2007)

under magnetic field" Phys. Rev. B 75 p. 035131 (2007)

- 1) *T.Back et al., "Thulium :Yag 2micron cw laser prostatectomy :where do we stand" World J Urol. 28, 163-168 (2010).
- 2) A. A. Kaminskii, "Crystaline Lasers: Physical Processes and Operating Schemes", CRC
- Press, (1996) Chapter 8, ISBN:0-8493-3720-8

3) M. Tian, et al., "Demonstration of geometric operations on the Bloch vectors in an

ensemble of rare-earth metal atoms "PHYSICAL REVIEW A 79, 022312 (2009)

- A. Louchet, et al., "Optical Excitation of Nuclear Spin Coherence in Tm3+:YAG" Phys.
- Rev. B 877 p. 195110 (2008)

O. Guillot-Noël, et al., "Quantum storage in rare-earth doped crystals for secure networks"

- A. Louchet, et al., "Branching ratio measurement of a "Lambda" system in Tm3+:YAG
- 4) Z. W. Barber, et al., "Angle of arrival estimation using spectral interferometry" J. Lumin.
- 130 (2010) 1614-1618
- 116-128 (2007).

R. K. Mohan, et al., "Ultra-wideband spectral analysis using S2 technology," J. Lumin. 127,

- G. Gorju, et al., "10 GHz RF spectrum analyzer with MHz resolution based on spectralspatial holography in Tm3+:YAG: experimental and theoretical study" J. Opt. Soc. Am. B 24 p. 457-470 (2007)
- M. Colice, et al., "Broadband radio-frequency spectrum analysis in spectral-hole-burning media" APPLIED OPTICS, Vol. 45, No. 25, page 6393 (2006)
- 5)R. Reibel, et al., "Demonstrations of analog-to-digital conversion using a frequency domain stretched processor," Optics Express 17, 11281-11286 (2009).
- Z. Cole, et al., "Unambiguous Range-Doppler LADAR processing using 2 giga-sampleper-second noise waveforms," J. Lumin. 127, 146-151 (2007).
- C. J. Renner, et al., "Broadband photonic arbitrary waveform generation based on spatialspectral holographic materials," JOSA B, Vol. 24, 2979-2987 (2007).
- T. L. Harris, et al., "Multigigahertz range-Doppler correlative signal processing in optical memory crystals," Applied Optics, 45(2), 343-352 (2006).

© 2005 - 2010 All images and site content are property of Scientific Materials Corp.